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Abstract In this paper, we show that the infinite-dimensional differential games with
simple objective functional can be solved in a finite-dimensional dual form in the
space of dual multipliers for the constraints related to the end points of the trajectories.
The primal solutions can be easily reconstructed by the appropriate dual subgradient
schemes. The suggested schemes are justified by the worst-case complexity analysis.
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1 Introduction

In the last years, we can observe an increasing interest to the primal-dual subgradient
methods. This line of research, started in [1], leads to the special methods, which allow
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one to reconstruct approximate solution to a conjugate problem. In order to do this,
methods need to get an access to the internal variables of the oracle. Therefore, all
these methods are problem specific.

This approach is very interesting, when the primal and conjugate problems have dif-
ferent levels of complexity. For example, we can have a primal minimization problem
of very high dimension, with very simple objective function and basic feasible set, and
a small number of linear equations. Introducing Lagrange multipliers for these linear
constraints, we can pass to the conjugate (dual) problem,1 which has good chances
to be simple in view of its small dimension. The only delicate problem is the recon-
struction of the primal variables from the minimization process, which we run in the
conjugate space.

In [2], this approach was applied to the problems of optimal control with con-
vex constraints for the end point of the trajectory. These constraints were treated
by linear operators from infinite-dimensional space of variables (control) to a finite-
dimensional space of phase variables. It was shown that an appropriate optimization
process in the latter space can generate also nearly optimal sequence of controls (func-
tions of time). Moreover, this technique was supported by the worst-case complexity
analysis.

In this paper, wemove further in this direction.We consider an infinite-dimensional
saddle-point problem, which variables (controls) must satisfy some linear equality
constraints. We show that these constraints can be dualized by finite-dimensional
multipliers. Moreover, it appears that the dual counterpart of our problem is again
a saddle-point problem, but in a finite dimension (we call this problem conjugate).
We show how to reconstruct the infinite-dimensional primal strategies from a special
finite-dimensional scheme, which solves the conjugate problem.

Thepaper is organized as follows. In theSect. 2,we consider the basic formulation of
differential games with convex–concave objective and with trajectories of the players
governed by the systems of linear differential equations. We treat the end points of
the trajectories as an image of linear operators from infinite- to finite-dimensional
space. For the future applications, we derive some bounds for their norms. In the
Sect. 3, we write down an equivalent conjugate saddle-point problem in the finite-
dimensional space of dual multipliers and derive some bounds on the size of the
optimal conjugate solutions. In the end of this section, we present a numerical scheme
and derive the upper bounds on the quality of primal and conjugate solutions. In the
Sect. 4, we consider a differential game with an objective function satisfying strong
convexity assumption. For this case, we obtain better complexity bounds. In the last
Sect. 5, we show how to form the conjugate problem for the initial finite-dimensional
convex–concave saddle-point problem with equality constraints. It seems that this
transformation is new even in this simplest situation. Therefore, we devote to it a
separate section.

1 Since the objective and the feasible set of our problem are simple, very often this can be done in an
explicit form.
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2 Differential Games

Consider two moving objects with dynamics given by the following equations:

ẋ(t) = Ax (t)x(t) + B(t)u(t), ẏ(t) = Ay(t)y(t) + C(t)v(t),

(x(0), y(0)) = (x0, y0). (1)

Here x(t) ∈ R
n, y(t) ∈ R

m are the phase vectors of these objects, u(t) is the control of
the first object (pursuer), and v(t) is the control of the second object (evader). Matrices
Ax (t), Ay(t), B(t), and C(t) are continuous and have appropriate sizes. The system
is considered on the time interval [0, θ ]. Controls are restricted in the following way
u(t) ∈ P ⊆ R

p, v(t) ∈ Q ⊆ R
q ∀t ∈ [0, θ ]. We assume that P, Q are closed,

convex sets.
The goal of the pursuer is to minimize the value of the functional:

F(u, v) + Φ(x(θ), y(θ)) :=
∫ θ

0
F̃(τ, u(τ ), v(τ ))dτ + Φ(x(θ), y(θ)). (2)

The goal of the evader is the opposite. We need to find an optimal guaranteed result
for each object, which leads to the problem of finding the saddle point of the above
functional. We assume the following:

– u(·) ∈ L2([0, θ ],Rp), and v(·) ∈ L2([0, θ ],Rq) (for the notation simplification
we denote L2([0, θ ],Rp) by L2

p and L2([0, θ ],Rq) by L2
q ),

– the saddle point in this class of strategies exists,
– the function F(u, v) is upper semi-continuous in v and lower semi-continuous in
u,

– Φ(x, y) is continuous.

Denote by Vx (t, τ ) the transition matrix of the first system in (1). It is the unique
solution of the following matrix Cauchy problem

dVx (t, τ )

dt
= Ax (t)Vx (t, τ ), t ≥ τ, Vx (τ, τ ) = E .

Here E is the identity matrix. If the matrix Ax (t) is constant, then
Vx (t, τ ) = e(t−τ)A.

If we solve the first differential equation in (1), then we can express x(θ) as a result
of the application of the linear operator B : L2

p → R
n :

x(θ) = Vx (θ, 0)x0 +
∫ θ

0
Vx (θ, τ )B(τ )u(τ )dτ := x̃0 + Bu. (3)
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Below,wewill use the conjugate operatorB∗ for the operatorB. Let us find it explicitly.
Let μ be a n-dimensional vector. Then,

〈μ,Bu〉 = 〈μ,

∫ θ

0
Vx (θ, τ )B(τ )u(τ )dτ 〉 =

∫ θ

0
〈μ, Vx (θ, τ )B(τ )u(τ )〉dτ

=
∫ θ

0
〈BT (τ )V T

x (θ, τ )μ, u(τ )〉dτ = 〈B∗μ, u〉.

Note that the vector ζ(t) = V T
x (θ, t)μ is the solution of the following Cauchy prob-

lem:

ζ̇ (t) = −AT
x (t)ζ(t), ζ(θ) = μ, t ∈ [0, θ ].

So we can solve this ODE and find B∗μ using the obtained solution ζ(t) as B∗μ(t)
= BT (t)ζ(t).

In the same way, we introduce the transition matrix Vy(t, τ ) of the second system
in (1), the operator C : L2

q → R
m defined by the formula

Cv := ∫ θ

0 Vy(θ, τ )C(τ )v(τ )dτ , and the vector ỹ0 := Vy(θ, 0)y0. The adjoint operator
C∗ also can be computed using the solution of some ODE.

So below we will study differential game problem in the following form:

min
u∈U

[
max
v∈V

{F(u, v) + Φ(x, y) : y = ỹ0 + Cv} : x = x̃0 + Bu
]

, (4)

where

U := {u(·) ∈ L2
p : u(t) ∈ P ∀t ∈ [0, θ ]},V := {v(·) ∈ L2

q : v(t) ∈ Q ∀t ∈ [0, θ ]}

are sets of admissible strategies of the players and u ∈ U , v ∈ V mean u(·) ∈ U ,
v(·) ∈ V . Our goal is to introduce a computational method for finding an approximate
solution of the problem (4).

Remark 2.1 In the same way, we can treat a problem with objective functional of the
form

∫ θ

0 F̃(τ, u(τ ), v(τ ))dτ +∑k
i=0 Φ(x(ti ), y(ti )), or constraints of the typeBu ∈ T

and Cv ∈ S, where T and S are closed, convex sets.

2.1 Estimating the Norms of the Operators B and C

Let us assume thatRn andRm are endowedwith theEuclideannorm‖ · ‖2.Consider the
problem of estimating the norms of operators B, C. This is an important problem since
below we need these operators to be bounded, and also their norms play a significant
role in the estimates for the rate of convergence of the methods we introduce. Let us
study the operator B (3), since the norm of C can be estimated in a similar way. The
following argument was used in [2], and it is presented here for the reader convenience.
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By definition, we have

‖B‖2 := sup
u∈L2

p

{‖Bu‖2 : ‖u‖L2
p

= 1}. (5)

As it was shown above, the conjugate operatorB∗ transformsμ ∈ R
n into the function

BT (τ )V T
x (θ, τ )μ ∈ L2

p. Let us define a matrix

R :=
∫ θ

0
Vx (θ, τ )B(τ )BT (τ )V T

x (θ, τ )dτ = BB∗, (6)

which is symmetric and positive semi-definite.

Definition 2.1 The system with the dynamics given by the first differential equation
in (1) and the initial value x(0) = 0 is called reachable on [0, θ ] iff for any x̂ ∈ R

n

there exists a control such that x(θ) = x̂ .

The reachability is closely related to the properties of the matrix R (see Corollary
2.3 in [3]).

Lemma 2.1 The system with the dynamics given by the first differential equation in
(1) and the initial value x(0) = 0 is reachable on [0, θ ] if and only if R is positive
definite.

We also need the following

Lemma 2.2 Let H be a Hilbert space and the linear operator A : H → RL be
nondegenerate: AA∗ � 0. Then, for any b ∈ RL and f ∈ H, the Euclidean projec-
tion πb( f ) of f onto the subspace Lb = {g ∈ H : Ag = b} is defined as πb( f )
= f + A∗(AA∗)−1(b − A f ).

From the definition (5),

‖B‖2 =
[
inf
u∈L2

p

{‖u‖L2
p

: ‖Bu‖2 = 1}
]−1

.

Using the reachability property, we have ImB(L2
p) = R

n and

inf
u∈L2

p

{‖u‖L2
p

: ‖Bu‖2 = 1} = inf
u∈L2

p,x∈Rn ,‖x‖2=1
{‖u‖L2

p
: Bu = x}.

From the Lemma 2.2, we have that

inf
u∈L2

p

{‖u‖L2
p

: Bu = x} = ‖B∗(BB∗)−1x‖L2
p

= 〈(BB∗)−1x, x〉1/2.
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Hence,

inf
u∈L2

p

{‖u‖L2
p

: ‖Bu‖2 = 1}

= inf‖x‖2=1
〈(BB∗)−1x, x〉1/2 = λ

1/2
min((BB∗)−1).

Finally, ‖B‖2 = λ
−1/2
min ((BB∗)−1) = λ

1/2
max(BB∗), where BB∗ = R.

Also we can get a time-independent estimate of ‖B‖2 in the case when x = 0 is an
exponentially stable equilibrium of the system with dynamics

ẋ(t) = Ax x(t), t ≥ 0,

where Ax is a matrix.
Recall the following well known result.

Theorem 2.1 [3] Assume that there exists a matrix M = MT � 0 such that AT
x M +

MAx ≺ 0. Then, the equilibrium x = 0 is globally exponentially stable.

So we can consider a case when there exists some ν > 0 and M = MT � 0 such that
AT
x M + MAx  −νM . Let us also assume that the matrix B(t) is time independent.

Then, we have that Bu is the position at the moment θ of the point of the unique
trajectory defined by the linear system

ẋ(t) = Ax x(t) + Bu(t), x(0) = 0.

Hence

‖x(θ)‖22 = 〈x(θ), x(θ)〉 ≤ 〈Mx(θ), x(θ)〉
λmin(M)

,

and

d

dt
〈Mx(t), x(t)〉 = 2〈Mx(t), ẋ(t)〉 = 2〈Mx(t), Ax(t) + Bu(t)〉

= 〈(AT M + MA)x(t), ẋ(t)〉 + 2〈Mx(t), Bu(t)〉
≤ −ν〈Mx(t), x(t)〉 + 2〈Mx(t), Bu(t)〉 ≤ 1

ν
〈MBu(t), Bu(t)〉.

Since x(0) = 0, we get

〈Mx(θ), x(θ)〉 =
∫ θ

0

d

dt
〈Mx(t), x(t)〉dt ≤ 1

ν

∫ θ

0
〈MBu(t), Bu(t)〉dt

≤ 1

ν
λmax(M)

∫ θ

0
‖Bu(t)‖22dt ≤ 1

ν
λmax(M)‖B‖22‖u‖2L2

p
.

Finally, we have ‖B‖22 ≤ λmax(M)
νλmin(M)

‖B‖22.
From now on, we assume that both operators B and C have bounded norms.
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3 Convex–Concave Problem

In this section, we consider the problem (4) satisfying two assumptions.

A1 The sets P and Q are bounded.
A2 In (2), the functional F(·, v) is convex for any fixed v, F(u, ·) is concave for
any fixed u, Φ(·, y) is convex for any fixed y, andΦ(x, ·) is concave for any fixed
x .

From A1, since the norms of the operators B, C are bounded, x(θ), y(θ) are also
bounded and we can equivalently reformulate the problem (4) in the following way:

min
u∈U ,x∈X

[
max

v∈V,y∈Y
{F(u, v) + Φ(x, y) : y = ỹ0 + Cv} : x = x̃0 + Bu

]

= max
v∈V,y∈Y

[
min

u∈U ,x∈X
{F(u, v) + Φ(x, y) : x = x̃0 + Bu} : y = ỹ0 + Cv

]
, (7)

where the sets X and Y are closed, convex and bounded. Let us introduce the spaces
of dual variables λ ∈ R

m and μ ∈ R
n corresponding to the linear constraints in the

problem (7), and some norms ‖ · ‖λ and ‖ · ‖μ in these spaces. We define the norms
in the dual space in the standard way

‖sλ‖λ,∗ := max{〈sλ, λ〉 : ‖λ‖λ ≤ 1}, ‖sμ‖μ,∗ := max{〈sμ,μ〉 : ‖μ‖μ ≤ 1}.

In the simple case, both the primal and the dual norms are Euclidean.

Lemma 3.1 Let the Assumptions A1, A2 be true. Also assume that the function
F(u, v) is upper semi-continuous in v and lower semi-continuous in u, the func-
tion Φ(x, y) is continuous, and that the sets P and Q are convex and closed. Then,
the problem (7) is equivalent to the problem

min
λ

max
μ

{
min
u∈U

max
v∈V

[F(u, v) − 〈μ,Bu〉 + 〈λ, Cv〉]

+min
x∈X max

y∈Y [Φ(x, y) + 〈μ, x〉 − 〈λ, y〉] − 〈μ, x̃0〉 + 〈λ, ỹ0〉
}

, (8)

which we call the conjugate problem to (7).

Proof Let us consider the inner problem in (7). Due toA2, for each v ∈ V and y ∈ Y ,
this is a problem of minimization of a convex function over a convex set with linear
constraints. Hence, it is equivalent to

χ(v, y) := min
u∈U ,x∈X

max
μ

{F(u, v) + Φ(x, y) + 〈μ, x − x̃0 − Bu〉} . (9)

Due to assumptionsA1,A2, using the fact that any closed, convex, and bounded set in
Hilbert space is compact in the weak topology, and taking into account that F(u, v) is
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upper semi-continuous in v and lower semi-continuous in u, by Corollary 3.3 in [4],
we can swap min and max:

χ(v, y) = max
μ

min
u∈U ,x∈X

{F(u, v) + Φ(x, y) + 〈μ, x − x̃0 − Bu〉} .

Note that χ(v, y) in (9) is a concave function of v an y. So the outer problem in (7)
is a problem of maximization of a concave function over a convex set with linear
constraints.
Hence, it is equivalent to: max

v∈V,y∈Y
min

λ
{χ(v, y) + 〈λ, Cv + ỹ0 − y〉}. Using the same

argument as above, we conclude that

max
v∈V,y∈Y

min
λ

{χ(v, y) + 〈λ, Cv + ỹ0 − y〉}
= min

λ
max

v∈V,y∈Y
{χ(v, y) + 〈λ, Cv + ỹ0 − y〉} .

Denote F(u, v)+Φ(x, y)+〈λ, Cv+ ỹ0−y〉+〈μ, x− x̃0−Bu〉 byΨ (u, v, x, y, λ, μ).
Hence, we have

(7) = min
λ

max
v∈V,y∈Y

max
μ

min
u∈U ,x∈X

{Ψ (u, v, x, y, λ, μ)} .

Swapping two operations of maximization, we get.

(7) = min
λ

max
μ

max
v∈V,y∈Y

min
u∈U ,x∈X

{Ψ (u, v, x, y, λ, μ)} .

Since the function Ψ (u, v, x, y, λ, μ) is convex in u, x and concave in v, y, and since
U , V are convex weakly compact sets, and X and Y are convex compacts, we can swap
max

v∈V,y∈Y
and min

u∈U ,x∈X
, and obtain (7)=(8). ��

We assume that the problems

ψ1(λ, μ) := min
u∈U

max
v∈V

[F(u, v) − 〈μ,Bu〉 + 〈λ, Cv〉] , (10)

ψ2(λ, μ) := min
x∈X max

y∈Y [Φ(x, y) + 〈μ, x〉 − 〈λ, y〉] (11)

are rather simple so that they can be solved efficiently or in a closed form. Note that
the conjugate problem is finite dimensional. By assumptions A1, A2, since a closed,
convex, and bounded set in Hilbert space is compact in the weak topology, and since
F(u, v) is upper semi-continuous in v and lower semi-continuous in u, by Corollary
3.3 in [4], we conclude that the saddle point in the problems (10), (11) does exist for
all λ ∈ R

m, μ ∈ R
n .
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Note that the problem (10) has the following form

min
u∈U

max
v∈V

[∫ θ

0

{
F̃(τ, u(τ ), v(τ )) − 〈B∗μ(τ), u(τ )〉 + 〈C∗λ(τ), v(τ )〉

}
dτ

]

=
∫ θ

0

{
min
u∈U

max
v∈V

[
F̃(τ, u(τ ), v(τ )) − 〈B∗μ(τ), u(τ )〉 + 〈C∗λ(τ), v(τ )〉

]
dτ

}
,

(12)

and it can be solved pointwise.

Lemma 3.2 Let the assumptionsA1 andA2 be true, and (u∗, v∗) be a saddle point of
the problem (10) for some fixed λ ∈ R

m, μ ∈ R
n. Then, the functionψ1(·, μ) is convex

for any fixed μ ∈ R
n, and its subgradient ∇λψ1(λ, μ) = Cv∗ is bounded in (λ, μ).

Similarly, the functionψ1(λ, ·) is concave for any fixed λ ∈ R
m, and its supergradient

∇μψ1(λ, μ) = −Bu∗ is bounded in (λ, μ).

Proof Since the saddle point in the problem (10) exists for any λ,μ, we have

ψ1(λ, μ) = min
u∈U

[
ψ̃1(u, λ) − 〈Bu, μ〉

]
, (13)

ψ1(λ, μ) = max
v∈V

[
ψ̂1(v, μ) + 〈Cv, λ〉

]
, (14)

where

ψ̃1(u, λ) := max
v∈V

[F(u, v) + 〈Cv, λ〉] , (15)

ψ̂1(v, μ) := min
u∈U

[F(u, v) − 〈Bu, μ〉] . (16)

In the first case, since we take the minimum of linear functions of μ, the result is
concave in μ. So ψ1(λ, μ) is concave with respect to μ for any fixed λ. Similarly, we
get that ψ1(λ, μ) is convex in λ for any fixed μ. Let us fix λ,μ0. Denote by (u∗

0, v
∗
0)

the saddle point of the problem (10) for λ,μ0, and by (u∗, v∗) the saddle point of this
problem for λ,μ, where μ is arbitrary. Then,

min
u∈U

[
ψ̃1(u, λ) − 〈Bu, μ〉

]
= ψ̃1(u

∗, λ) − 〈Bu∗, μ〉,

min
u∈U

[
ψ̃1(u, λ) − 〈Bu, μ0〉

]
= ψ̃1(u

∗
0, λ) − 〈Bu∗

0, μ0〉.

Note that

ψ1(λ, μ) − ψ1(λ, μ0) + 〈Bu∗
0, μ − μ0〉

= ψ̃1(u
∗, λ) − 〈Bu∗, μ〉 − ψ̃1(u

∗
0, λ) + 〈Bu∗

0, μ0〉 + 〈Bu∗
0, μ − μ0〉

= ψ̃1(u
∗, λ) − 〈Bu∗, μ〉 − (ψ̃1(u

∗
0, λ) − 〈Bu∗

0, μ〉)
= min

u∈U
{ψ̃1(u, λ) − 〈Bu, μ〉} − (ψ̃1(u

∗
0, λ) − 〈Bu∗

0, μ〉) ≤ 0.
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So, by definition, the vector −Bu∗ is a supergradient of ψ1(λ, μ) with respect to μ. In
the same way, we prove that Cv∗ is a subgradient of ψ1(λ, μ) with respect to λ. Since
P and Q are bounded, we have ‖u(t)‖L2

p
≤ √

θ maxz∈P ‖z‖2 = √
θdiam2P .

Here we introduced notation for any set S diamαS := max{‖z‖α : z ∈ S}, where
the index α denotes some norm. Similarly, ‖v(t)‖L2

q
≤ √

θdiam2Q. Then, since the
norms ‖B‖μ,L2

p
and ‖C‖λ,L2

q
, defined by

‖B‖μ,L2
p

:= max
μ∈Rn ,u∈L2

p

{〈Bu, μ〉 : ‖μ‖μ = 1, ‖u‖L2
p

= 1},

‖C‖λ,L2
q

:= max
λ∈Rm ,v∈L2

q

{〈Cv, λ〉 : ‖λ‖λ = 1, ‖v‖L2
q

= 1},

are bounded, and then, we have

‖∇λψ1(λ, μ)‖λ,∗ ≤ √
θ ‖C‖λ,L2

q
diam2Q,

∥∥∇μψ1(λ, μ)
∥∥

μ,∗ ≤ √
θ ‖B‖μ,L2

p
diam2P.

��
In a similar way, we can prove the following statement.

Lemma 3.3 Let the assumptions A1 and A2 be true, and (x∗, y∗) be a saddle point
of the problem (11) for some given λ ∈ R

m, μ ∈ R
n. Then, the function ψ2(·, μ) is

convex for any fixed μ ∈ R
n, and its subgradient ∇λψ2(λ, μ) = −y∗ is bounded

in (λ, μ). Similarly, the function ψ2(λ, ·) is concave for any fixed λ ∈ R
m, and its

supergradient ∇μψ2(λ, μ) = x∗ is bounded in (λ, μ).

Combining theLemmas3.2 and3.3,weget that the functionψ(λ,μ) := ψ1(λ, μ)+
ψ2(λ, μ) − 〈μ, x̃0〉 + 〈λ, ỹ0〉 is convex in λ and concave in μ with the partial sub-
gradients ψ ′

λ(λ, μ) = Cv∗ + ỹ0 − y∗, and ψ ′
μ(λ, μ) = x∗ − x̃0 − Bu∗ satisfying the

bounds

∥∥ψ ′
λ(λ, μ)

∥∥
λ,∗ ≤ Lλ := √

θ ‖C‖λ,L2
q
diam2Q + diamλ,∗Y + ‖ỹ0‖λ,∗,∥∥ψ ′

μ(λ, μ)
∥∥

μ,∗ ≤ Lμ := √
θ ‖B‖μ,L2

p
diam2P + diamμ,∗X + ‖x̃0‖μ,∗. (17)

3.1 Example of the Problem (10)

Let us consider an example with n = 2,m = 2, θ = 1, p = q = 1, P = [−1, 1],
Q = [−1, 1], and

Ax (t) = Ay(t) =
(
0 1
0 0

)
, B(t) = C(t) =

(
0
1

)
, x(0) =

(
0
0

)
, y(0) =

(
1
1

)
.

The objective functional will be as follows:

J (u, v) =
∫ 1

0

(
(u(t))2

2
− (v(t))2

2

)
dt + 1

2
‖x(1) − y(1)‖22 − ‖y(1) − y0‖22,
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where y0 = (2, 0)T , and the norm in the second and third terms is Euclidean. This
functional satisfies Assumptions A1 and A2.

Note that

Vx (t, τ ) = Vy(t, τ ) =
(
1 t − τ

0 1

)
,

(B∗μ)(t) = BT (t)V T
x (1, t)μ = (1 − t)μ1 + μ2, (C∗λ)(t) = (1 − t)λ1 + λ2.

Also we can explicitly solve (10) using (12):

ψ1(λ, μ) =
∫ 1

0
( f ((1 − t)μ1 + μ2) − f ((1 − t)λ1 + λ2))dt,

where the function f (ρ) : R → R is defined by

f (ρ) :=
{

−ρ2

2 |ρ| ≤ 1
1
2 − |ρ| |ρ| > 1

.

3.2 Estimating the Norms of λ∗, μ∗

Let us compute the estimates for the norms of the components λ and μ of the solu-
tion of the conjugate problem. Denote for any function of two variables Ψ (z, w) by
Ψ ′(z̃, z − z̃|w) the directional derivative of the function Ψ (·, w) for some fixed w at
the point z̃ in the direction z − z̃. Similarly, Ψ ′(z|w̃, w − w̃) denotes the directional
derivative of the functionΨ (z, ·) for some fixed z at the point w̃ in the directionw−w̃.
Also byBα

r (0) we denote a ball of radius r in the norm ‖ · ‖α with center at the origin.

Lemma 3.4 Assume that

Δux := max
u,ũ∈U ,x,x̃∈X,v∈V,y∈Y

{−F ′(ũ, u − ũ|v) − Φ ′(x̃, x − x̃ |y)} < +∞,

Δvy := max
v,ṽ∈V,y,ỹ∈Y,u∈U ,x∈X

{F ′(u|ṽ, v − ṽ) + Φ ′(x |ỹ, y − ỹ)} < +∞.

If

Bμ,∗
r (0) ⊆ {s = Bu + x̃0 − x : u ∈ U , x ∈ X},
Bλ,∗

r (0) ⊆ {s = Cv + ỹ0 − y : v ∈ V, y ∈ Y }, (18)

then ‖μ∗‖μ ≤ Δux
r and ‖λ∗‖λ ≤ Δvy

r .

Proof Consider the function ψ(λ∗, μ). It is concave and achieves its maximum at
the point μ∗. From the representation (13) and similar representation for ψ2(λ, μ),
we conclude that the function ψ(λ∗, μ) is a minimum of a set of functions concave
(linear) in the variableμ and convex in the variable (u, x). Hence, the set ofminimizers
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(uμ, xμ) is convex, and by the theorem about the subdifferential of a function which
is a minimum of concave functions, we have

∂μψ(λ∗, μ) = {xμ − x̃0 − Buμ : uμ ∈ U , xμ ∈ X,

ψ̃1(uμ, λ∗) + ψ̃2(xμ, λ∗) + 〈xμ − x̃0 − Buμ,μ〉 = ψ(λ∗, μ)
}

.

From (15), and a similar definition of ψ̃2(xμ, λ∗), we get that

ψ̃ ′
1(uμ, u − uμ|λ∗) = F ′(uμ, u − uμ|v∗(uμ, λ∗)),

ψ̃ ′
2(xμ, x − xμ|λ∗) = Φ ′(xμ, x − xμ|v∗(xμ, λ∗)).

From this equalities and the optimality conditions for the problem defining ψ(λ∗, μ),
we get for all u ∈ U , x ∈ X

F ′(uμ, u − uμ|v∗(uμ, λ∗)) + Φ ′(xμ, x − xμ|v∗(xμ, λ∗))
+〈x − xμ − Bu + Buμ,μ〉 ≤ 0,

or

〈x − Bu − x̃0, μ〉
≤ −F ′(uμ, u − uμ|v∗(uμ, λ∗)) − Φ ′(xμ, x − xμ|v∗(xμ, λ∗)) + 〈μ,ψ ′

μ(λ∗, μ)〉.

Hence, for any μ,

max
u∈U ,x∈X

〈x − Bu − x̃0, μ〉 ≤ Δux + 〈μ,ψ ′
μ(λ∗, μ)〉.

Using the first inclusion in (18) and the fact that 0 ∈ ∂μψ(λ∗, μ∗), we get that

‖μ∗‖μ ≤ Δux

r
.

The estimate for ‖λ∗‖λ is proved in the same manner. ��
Let us consider an example of sufficient conditions for the inclusion (18). If the set

X has a nonempty interior and there exists some ū ∈ U such thatBū+ x̃0 = x̄ ∈ intX ,
then there exists some r > 0 such that x̄ + B

μ,∗
r (0) ⊆ X . Then, we have

Bμ,∗
r (0) = Bū + x̃0 − x̄ + Bμ,∗

r (0) ⊆ {s = Bu + x̃0 − x : u ∈ U , x ∈ X}.

Similar arguments can be used for the second inclusion in (18).
Let us consider another example. Since the problem (4) does not have any con-

straints for x and y, and the sets X and Y can be introduced due to the boundedness of
the norms of the operators B, C, we can apply the following reasoning. Assume that
there exists some ū ∈ P and r0 > 0 such that P ⊆ B2

r0(ū). Then, for every u ∈ P ,
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there exists some ũ ∈ B2
r0(0) : u = ū+ ũ. Let us define functions ū(t) ≡ ū, ũ(t) :=

u(t) − ū(t), where u(t) ∈ U is arbitrary. Then, for xu(θ) := x̃0 + Bū(t) + Bũ(t), we
have ‖xu(θ) − x̃0 − Bū(t)‖μ,∗ ≤ ‖Bũ(t)‖μ,∗ ≤ ‖B‖μ,L2

p
r0

√
θ . So if we choose

X = B‖B‖
μ,L2p

r0
√

θ (x̃0 + Bū(t)), we will be in the situation of the previous example

and can take r = ‖B‖μ,L2
p
r0

√
θ in the conditions of the Lemma 3.4. For the second

inclusion in (18), we can apply a similar argument.

3.3 Algorithm Description

Note that, in the case when the dimensions n and m are rather small, then linearly
converging cutting plane algorithms such as ellipsoids method, outer simplex method
or inscribed ellipsoids method could be used to solve the conjugate problem and
reconstruct the approximate solution of the initial problem. But their rate of conver-
gence will depend on the dimensions n and m. Below we use primal-dual subgradient
method to solve the conjugate problem and reconstruct the approximate solution of
the initial problem. This allows us to construct a method with dimension-independent
convergence rate.

We assume that we are given some prox function dλ(λ) with prox center λ0, which
is strongly convex with convexity parameter σλ in the given norm ‖ · ‖λ. For μ, we
introduce the similar assumptions.

Since (λ∗, μ∗) is the saddle point, by the definition, we have the following inequal-
ities:

ψ(λ∗, μ) ≤ ψ(λ∗, μ∗) ≤ ψ(λ,μ∗) ∀λ,μ.

From the convexity of the function ψ(λ,μ) with respect to λ, by the definition of
partial subgradient ψ ′

μ(λ, μ) at the point (λ, μ), we have the following:

ψ(λ∗, μ) ≥ ψ(λ,μ) + 〈ψ ′
λ(λ, μ), λ∗ − λ〉 ∀λ,μ.

Similarly, using concavity of ψ(λ,μ) with respect to μ, we have:

ψ(λ,μ∗) ≤ ψ(λ,μ) + 〈ψ ′
μ(λ, μ), μ∗ − μ〉 ∀λ,μ

Finally, from the above inequalities, we have:

〈ψ ′
λ(λ, μ), λ − λ∗〉 + 〈−ψ ′

μ(λ, μ), μ − μ∗〉 ≥ 0 ∀λ,μ.

Hence, (λ∗, μ∗) is a weak solution to the following variational inequality

〈g(λ, μ), (λ − λ∗, μ − μ∗)〉 ≥ 0, ∀λ,μ,

where g(λ, μ) := (ψ ′
λ(λ, μ),−ψ ′

μ(λ, μ)).
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All of this allows us to apply the method of Simple Dual Averages (SDA) from [1]
for finding an approximate solution of the finite-dimensional problem (8).

Let us choose some κ ∈]0, 1[. As in Sect. 4 in [1], we consider a space of z := (λ, μ)

with the norm
‖z‖z :=

√
κσλ ‖λ‖2λ + (1 − κ)σμ ‖μ‖2μ, (19)

an oracle g(z) := (gλ(z),−gμ(z)), a newprox function d(z) := κdλ(λ) + (1− κ) dμ

(μ), which is strongly convex with constant σ0 = 1 with respect to the norm (19). We
define W := R

m × R
n .

The conjugate norm for (19) is

‖g‖z,∗ :=
√

1

κσλ

‖gλ‖2λ,∗ + 1

(1 − κ)σμ

‖gμ‖2μ,∗.

So we have a uniform upper bound for the answers of the oracle ‖g(λ, μ)‖2z,∗ ≤ L2

:= L2
λ

κσλ
+ L2

μ

(1−κ)σμ
, where Lλ and Lμ are defined in (17).

The SDA method for solving (8) is the following

1. Initialization: Set s0 = 0. Choose z0, γ > 0.
2. Iteration (k ≥ 0):

Compute gk = g(zk). Set sk+1 = sk + gk . (M1)

βk+1 = γ β̂k+1. Set zk+1 = πβk+1(−sk+1).

Here the sequence β̂k+1 is defined by relations β̂0 = β̂1 = 1, β̂i+1 = β̂i + 1
β̂i
, for

i ≥ 1. In accordance with the Lemma 3 in [1], for k ≥ 1, it satisfies the inequalities

√
2k − 1 ≤ β̂k ≤ 1

1 + √
3

+ √
2k − 1.

The mapping πβ(s) is defined in the following way

πβ(s) := argmin
z∈W {−〈s, z〉 + βd(z)} .

Since the saddle point in the problem (7) does exist, there exists a sad-
dle point (λ∗, μ∗) in the conjugate problem (8). According to the Theorem
1 in [1], the method (M1) generates a bounded sequence {zi }i≥0. Hence, the
sequences {λi }i≥0, {μi }i≥0 are also bounded. So we can choose Dλ, Dμ such that
dλ(λi ) ≤ Dλ, dμ(μi ) ≤ Dμ for all i ≥ 0 and also, the pair (λ∗, μ∗)
is an interior solution: Bλ

r/
√

κσλ
(λ∗) ⊆ Wλ := { λ : dλ(λ) ≤ Dλ}, and

B
μ

r/
√

(1−κ)σμ
(μ∗) ⊆ Wμ := {

μ : dμ(μ) ≤ Dμ

}
for some r > 0. Then, we have

z∗ := (λ∗, μ∗) ∈ FD := { z ∈ W : d(z) ≤ D } with D := κDλ + (1 − κ)Dμ

and Bz
r (z

∗) ⊆ FD .
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Let us introduce a gap function

δk(D) := max
z

{
k∑

i=0

〈gi , zi − z〉 : z ∈ FD

}
. (20)

From the Theorem 2 in [1] (equation (4.6)), we have

1

k + 1
δk(D) ≤ β̂k+1

k + 1

(
γ D + L2

2γ

)
. (21)

Denote
(
ûk+1, v̂k+1, x̂k+1, ŷk+1

) := 1

k + 1

k∑
i=0

(ui , vi , xi , yi ), (22)

where (ui , vi ), (xi , yi ) are the saddle points at the point (λi , μi ) in (10) and (11),
respectively. Note that for all u ∈ U , v ∈ V, x ∈ X , and y ∈ Y , we have

F(u, vi ) + Φ(x, yi ) + 〈μi , x − x̃0 − Bu〉 + 〈λi , Cvi + ỹ0 − yi 〉 ≥ ψ(λi , μi )

≥ F(ui , v) + Φ(xi , y) + 〈μi , xi − x̃0 − Bui 〉 + 〈λi , Cv + ỹ0 − y〉. (23)

We define a function

φ(u, x, v, y) := min
λ

max
μ

{F(u, v) + Φ(x, y) + 〈μ, x − x̃0 − Bu〉
+ 〈λ, Cv + ỹ0 − y〉 : dλ(λ) ≤ Dλ, dμ(μ) ≤ Dμ

}
. (24)

Since dλ(λ
∗) ≤ Dλ, dμ(μ∗) ≤ Dμ, and the conjugate problem is equivalent to the

initial one, we conclude that the initial problem is equivalent to the problem

min
u∈U ,x∈X

max
v∈V,y∈Y

φ(u, x, v, y). (25)

Let us introduce two auxiliary functions:

ξ(u, x) := max
v∈V,y∈Y

φ(u, x, v, y), (26)

η(v, y) := min
u∈U ,x∈X

φ(u, x, v, y). (27)

Note that ξ(u, x) is convex, η(v, y) is concave, and ξ(u, x) ≥ φ(u∗, x∗, v∗, y∗) ≥
η(v, y) for all u ∈ U , v ∈ V, x ∈ X, y ∈ Y , where φ(u∗, x∗, v∗, y∗) is the solution to
(25).

Theorem 3.1 Let the assumptionsA1 andA2 be true. Then, the points (22) generated
by the method (M1) satisfy:
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ξ(ûk+1, x̂k+1) − η(v̂k+1, ŷk+1) ≤ β̂k+1

k + 1

(
γ D + L2

2γ

)
, (28)

∥∥x̃0 + Bûk+1 − x̂k+1
∥∥

μ,∗ ≤ β̂k+1
√

σμ

r(k + 1)

(
γ D + L2

2γ

)
,

∥∥ỹ0 + Cv̂k+1 − ŷk+1
∥∥

λ,∗ ≤ β̂k+1
√

σλ

r(k + 1)

(
γ D + L2

2γ

)
. (29)

Proof From the inequalities (23), by the convexity of F(·, v), Φ(·, y), we have

F(ûk+1, v) + Φ(x̂k+1, y) + 〈μ, x̂k+1 − x̃0 − Bûk+1〉 + 〈λ, Cv + ỹ0 − y〉

≤ 1

k + 1

k∑
i=0

ψ(λi , μi ) + 1

k + 1

k∑
i=0

〈μ − μi , xi − x̃0 − Bui 〉

+ 〈λ − 1

k + 1

k∑
i=0

λi , Cv + ỹ0 − y〉.

This gives us

ξ(ûk+1, x̂k+1) ≤ 1

k + 1

k∑
i=0

ψ(λi , μi )

+ max
μ

{
1

k + 1

k∑
i=0

〈μ − μi , xi − x̃0 − Bui 〉 : dμ(μ) ≤ Dμ

}

+ max
v∈V,y∈Y

min
λ

{
〈λ − 1

k + 1

k∑
i=0

λi , Cv + ỹ0 − y〉 : dλ(λ) ≤ Dλ

}
. (30)

Since the method (M1) generates points λi , which satisfy dλ(λi ) ≤ Dλ, and there
exist v1 ∈ V and y1 such that Cv1 + ỹ0 = y1, we conclude that
( 1
k+1

∑k
i=0 λi , v1, y1) is the saddle point of the third term, and

max
v∈V,y∈Y

min
λ

{
〈λ − 1

k + 1

k∑
i=0

λi , Cv + ỹ0 − y〉 : dλ(λ) ≤ Dλ

}
= 0.

Similarly, we have

η(v̂k+1, ŷk+1) ≥ 1

k + 1

k∑
i=0

ψ(λi , μi )

− max
λ

{
1

k + 1

k∑
i=0

〈λi − λ, Cvi + ỹ0 − yi 〉 : dλ(λ) ≤ Dλ

}
.
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Finally, we have the following

ξ(ûk+1, x̂k+1) − η(v̂k+1, ŷk+1)

≤ 1

k + 1

(
max

μ

{
k∑

i=0

〈μ − μi , xi − x̃0 − Bui 〉 : dμ(μ) ≤ Dμ

}

+max
λ

{
k∑

i=0

〈λi − λ, Cvi + ỹ0 − yi 〉 : dλ(λ) ≤ Dλ

})

≤ 1

k + 1
max
z

{
k∑

i=0

〈gi (z), zi − z〉 : d(z) ≤ κDλ + (1 − κ)Dμ

}
= 1

k + 1
δk(D).

Combining this with (21), we get (28).
Let us prove that (22) is also a nearly feasible solution. Obviously,

1

(1 − κ)σμ

∥∥Bûk+1 + x̃0 − x̂k+1
∥∥2

μ,∗ ≤ 1

(1 − κ)σμ

∥∥Bûk+1 + x̃0 − x̂k+1
∥∥2

μ,∗

+ 1

κσλ

∥∥Cv̂k+1 + ỹ0 − ŷk+1
∥∥2

λ,∗ ,

1

κσλ

∥∥Cv̂k+1 + ỹ0 − ŷk+1
∥∥2

λ,∗

≤ 1

(1 − κ)σμ

∥∥Bûk+1 + x̃0 − x̂k+1
∥∥2

μ,∗

+ 1

κσλ

∥∥Cv̂k+1 + ỹ0 − ŷk+1
∥∥2

λ,∗ .

On the other hand, from the proof of the third item in the Theorem 1 in [1], we have

[
1

r(k + 1)
δk(D)

]2
≥ ∥∥ŝk+1

∥∥2
z,∗ =

∥∥∥∥∥
1

k + 1

k∑
i=0

(gλ(zi ),−gμ(zi ))

∥∥∥∥∥
2

z,∗

=
∥∥∥∥∥

1

k + 1

k∑
i=0

(Cvi + ỹ0 − yi ,Bui + x̃0 − xi )

∥∥∥∥∥
2

z,∗

= 1

(1 − κ)σμ

∥∥Bûk+1 + x̃0 − x̂k+1
∥∥2

μ,∗

+ 1

κσλ

∥∥Cv̂k+1 + ỹ0 − ŷk+1
∥∥2

λ,∗ .

This in combination with (21) gives us (29). ��
Sowe conclude that (ûk+1, v̂k+1, x̂k+1, ŷk+1) is a nearly optimal and nearly feasible

point with an error of O
(

1√
k+1

)
.
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Let us make some notes on how to choose parameters γ , D, and r of the method.
Recall the example introduced in the Sect. 3.1, but let us choose the following quality
functional

J (u, v) = Φ(x(1), y(1)) = 1

2
‖x(1) − y(1)‖22 − ‖y(1) − y0‖22,

where y0 = (2, 0)T and norms are Euclidean. Hence, we have F(u, v) ≡ 0 and the
assumptions A1 and A2 hold. Let us use the method described in Sect. 2.1 to estimate
the norms of the operators B and C in this example. We choose Euclidean norm as
‖·‖λ, ‖·‖μ. Since the operators are similar, we consider operatorB. To estimate ‖B‖2,
we need to calculate the maximum eigenvalue of the matrix

∫ 1

0
Vx (1, t)B(t)BT (t)V T

x (1, t)dt =
(

1
3

1
2

1
2 1

)
.

We get that ‖B‖2 = √
λmax ≈ 1.12. Next, we need to introduce sets X and Y . We

know that x(θ) = x̃0+Bu and u(t) ∈ [−1, 1] for all t ∈ [0, 1]. Hence, ‖x(θ)− x̃0‖2 ≤
‖Bu‖2 ≤ ‖B‖2 = 1.12 and we can take X = B2

1.12(x̃0). Similarly, Y = B2
1.12(ỹ0).

Also we can find the bound for ‖ψ ′
λ(λ, μ)‖2 = ‖x − x̃0 + Bu‖2 ≤ ‖Bu‖2 + ‖x −

x̃0‖2 ≤ 2‖B‖2 = Lλ = 2.24. Similarly, ‖ψ ′
μ(λ, μ)‖2 ≤ 2‖C‖2 = Lμ = 2.24.

Next, we need to find Dλ, Dμ, and D. From the second example after Lemma 3.4 since
‖B‖2 = ‖C‖2 = 1.12 and P = Q = [−1, 1], we conclude that we can take r = 1.12
in both inclusions (18). The estimation of Δux ,Δvy gives Δux ≤ 10,Δvy ≤ 10.
Hence, ‖λ∗‖2 ≤ 9, ‖μ∗‖2 ≤ 9.

Using the method above, we can find a nearly feasible nearly optimal solution.

We choose the prox functions dλ(λ) := ‖λ‖22
2 , dμ(μ) := ‖μ‖22

2 , κ = 1/2. We choose
γ = L/

√
2D to minimize the right-hand side of the error estimations in the Theorem

3.1. Then, we have d(z) = ‖λ‖22
4 + ‖μ‖22

4 , ‖z∗‖ ≤ 9.
From the Theorem 2 in [1], we get that for the sequence {zk} generated by SDA

method, it holds that

‖zk − z∗‖2z ≤ 2d(z∗) + L2 = ‖z∗‖2z + L2.

Then,

d(zk) = ‖zk‖2z
2

≤ 1

2
(‖z∗‖z +

√
‖z∗‖2z + L2)2 ≤ 182.

So ‖λk‖22/2 ≤ 364, andwe can take Dλ = 364. In the sameway,we get that Dμ = 364
and also that D = 364. Finally, we have that Bz

12.5(z
∗) ⊆ FD and r = 12.5.

4 Strongly Convex–Concave Problem

In this section, we consider the problem (4), satisfying the following assumptions.
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A3 The function F(·, v) is strongly convex for any fixed v with constant σFu which
does not depend on v, and function F(u, ·) is strongly concave for any fixed u with
constant σFv which does not depend on u. Also assume that:

‖∇u F(u, v1) − ∇u F(u, v2)‖L2
p

≤ Luv ‖v1 − v2‖L2
q
, (31)

‖∇vF(u1, v) − ∇vF(u2, v)‖L2
q

≤ Lvu ‖u1 − u2‖L2
p
. (32)

A4 Φ(·, y) is strongly convex for any fixed y with respect to the norm ‖ · ‖μ,∗ with
constant σΦx which does not depend on y and Φ(x, ·) is strongly concave for any
fixed x with respect to the norm ‖ · ‖λ,∗ with constant σΦy which does not depend on
x . Also we assume that:

‖∇xΦ(x, y1) − ∇xΦ(x, y2)‖μ ≤ Lxy ‖y1 − y2‖λ,∗ , (33)∥∥∇yΦ(x1, y) − ∇yΦ(x2, y)
∥∥

λ
≤ Lyx ‖x1 − x2‖μ,∗ , (34)

and

‖∇xΦ(x1, y) − ∇xΦ(x2, y)‖μ ≤ Lxx ‖x1 − x2‖μ,∗ , (35)∥∥∇yΦ(x, y1) − ∇yΦ(x, y2)
∥∥

λ
≤ Lyy ‖y1 − y2‖λ,∗ . (36)

Note that the assumptions A3, A4 imply that the level sets of the functions
F(u, v),Φ(x, y) are closed, convex, and bounded. Similarly to the proof of theLemma
3.1, we get that the conjugate problem for (4) is

min
λ

max
μ

{
min
u∈U

max
v∈V

[F(u, v) − 〈μ,Bu〉 + 〈λ, Cv〉]

+min
x

max
y

[Φ(x, y) + 〈μ, x〉 − 〈λ, y〉] − 〈μ, x̃0〉 + 〈λ, ỹ0〉
}

. (37)

Here λ ∈ R
m and μ ∈ R

n .
We assume that the problems

ψ1(λ, μ) := min
u∈U

max
v∈V

[F(u, v) − 〈μ,Bu〉 + 〈λ, Cv〉] , (38)

ψ2(λ, μ) := min
x

max
y

[Φ(x, y) + 〈μ, x〉 − 〈λ, y〉] (39)

are simple, which means that they can be solved efficiently or in a closed form (see the
example in the Sect. 3). Note that the conjugate problem is finite dimensional. Using
the assumptionsA3,A4, the fact that closed, convex, and bounded set in Hilbert space
is compact in the weak topology, the fact that F(u, v) is upper semi-continuous in v

and lower semi-continuous in u, and Corollary 3.3 in [4], we conclude that the saddle
points in the problems (38), (39) do exist for all λ ∈ R

m and μ ∈ R
n .
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Lemma 4.1 Let the Assumption A3 be true. Then, the function ψ1(λ, μ) in (38) is
smooth with the partial gradients satisfying the following Lipschitz condition:

∥∥∇μψ1(λ1, μ1) − ∇μψ1(λ2, μ2)
∥∥

μ,∗ ≤
‖B‖2

μ,L2
p

σFu
‖μ1 − μ2‖μ

+
‖B‖μ,L2

p
‖C‖λ,L2

q
Luv

σFuσFv

‖λ1 − λ2‖λ , (40)

‖∇λψ1(λ1, μ1) − ∇λψ1(λ2, μ2)‖λ,∗ ≤
‖C‖2

λ,L2
q

σFv

‖λ1 − λ2‖λ

+
‖B‖μ,L2

p
‖C‖λ,L2

q
Lvu

σFuσFv

‖μ1 − μ2‖μ . (41)

Proof From the strong convexity of the function F(·, v), we have for any t ∈ [0, 1]

ψ̃1(tu1 + (1 − t)u2, λ) = max
v∈V

[F(tu1 + (1 − t)u2, v) + 〈Cv, λ〉]

≤ max
v∈V

[
t F(u1, v) + (1 − t)F(u2, v) − t (1 − t)

σFu

2
‖u1 − u2‖2L2

p
+ 〈Cv, λ〉

]

≤ t max
v∈V

[F(u1, v) + 〈Cv, λ〉] + (1 − t)max
v∈V

[F(u2, v) + 〈Cv, λ〉]

− t (1 − t)
σFu

2
‖u1 − u2‖2L2

p
= tψ̃1(u1, λ) + (1 − t)ψ̃1(u2, λ)

− t (1 − t)
σFu

2
‖u1 − u2‖2L2

p

So, by definition, the function ψ̃1(u, λ) is strongly convex with constant σFu . This
means that the optimal point u∗ in (13) is unique and that ψ1(λ, μ) is smooth with
respect to μ. Hence, ∇μψ1(λ, μ) = −Bu∗(λ, μ). Since F(u, ·) is strongly concave
for any fixed u, we get that the solution v∗ of (15) is unique and the function ψ̃1(u, λ)

is smooth with respect to u. Denote by ui the optimal point in (13) for some λ,μi ,

i = 1, 2. From the first-order optimality conditions for (13), we have

〈∇uψ̃1(u1, λ) − B∗μ1, u2 − u1〉 ≥ 0,

〈∇uψ̃1(u2, λ) − B∗μ2, u1 − u2〉 ≥ 0.

Adding these inequalities and using strong convexity of ψ̃1(u, λ), we continue as
follows:

〈B∗(μ1−μ2), u1 − u2〉≥〈∇uψ̃1(u1, λ)−∇uψ̃1(u2, λ), u1−u2〉 ≥ σFu ‖u1 − u2‖2L2
p
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Finally, we have

‖Bu1 − Bu2‖2μ,∗ ≤ ‖B‖2
μ,L2

p
‖u1 − u2‖2L2

p
≤

‖B‖2
μ,L2

p

σFu
〈B∗(μ1 − μ2), u1 − u2〉

≤
‖B‖2

μ,L2
p

σFu
‖μ1− μ2‖μ ‖B(u1 − u2)‖μ,∗

(42)

Denote by (ui , vi ) the saddle point in (38) for some λi , μ and i = 1, 2. Similarly to
the previous case, we conclude that ψ̂1(v, μ) is strongly concave in v with constant
σFv and smooth with respect to v. As we did this above, from the first-order optimality
conditions for (14) and using the strong concavity of ψ̂1(v, μ), we have:

〈C∗(λ1 − λ2), v1 − v2〉 ≥ σFv
‖v1 − v2‖2L2

q
.

This gives us

‖v1 − v2‖L2
q

≤
‖C‖λ,L2

q

σFv

‖λ1 − λ2‖λ .

From the first-order optimality conditions for (16), we get:

〈∇u F(u2, v2) − ∇u F(u1, v1), u1 − u2〉 ≥ 0.

Using that F(·, v) is strongly convex for any fixed v, this gives us

〈∇u F(u2, v2) − ∇u F(u2, v1), u1 − u2〉 ≥ σFu ‖u1 − u2‖2L2
p
.

From this, using (31) and the estimate for ‖v1 − v2‖L2
q
, we get

‖u1 − u2‖L2
p

≤
‖C‖λ,L2

q
Luv

σFuσFv

‖λ1 − λ2‖λ .

Finally ,we have

‖Bu1 − Bu2‖μ,∗ ≤ ‖B‖μ,L2
p
‖u1 − u2‖L2

p
≤

‖C‖λ,L2
q
‖B‖μ,L2

p
Luv

σFuσFv

‖λ1 − λ2‖λ .

(43)
Combining (42) and (43), we get (40). Estimate (41) can be proved in the samemanner.

��
In a similar way, we can prove the following statement.
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Lemma 4.2 Let the Assumption A4 be true. Then, the function ψ2(λ, μ) in (39) is
smooth with the partial gradients satisfying the following Lipschitz condition:

∥∥∇μψ2(λ1, μ1) − ∇μψ2(λ2, μ2)
∥∥

μ,∗ ≤ 1

σΦx
‖μ1 − μ2‖μ + Lxy

σΦxσΦy
‖λ1 − λ2‖λ ,

(44)

‖∇λψ2(λ1, μ1) − ∇λψ2(λ2, μ2)‖λ,∗ ≤ 1

σΦy
‖λ1 − λ2‖λ + Lyx

σΦxσΦy
‖μ1 − μ2‖μ .

(45)

CombiningLemma4.1 and4.2,weget that the functionψ(λ,μ) := ψ1(λ, μ)+ψ2
(λ, μ) − 〈μ, x̃0〉 + 〈λ, ỹ0〉 is convex in λ and concave in μ with partial gradients

∇λψ(λ, μ) = Cv∗ + ỹ0 − y∗, (46)

∇μψ(λ,μ) = x∗ − x̃0 − Bu∗, (47)

where (u∗, v∗) is the saddle point for the problem (38), and (x∗, y∗) is the saddle point
for the problem (39).

4.1 Estimating the Norms of λ∗, μ∗

Let us find the bounds for the norms of the components λ,μ of the solution of the
conjugate problem (37).

Lemma 4.3 Let the Assumptions A3, A4 be true. Assume that P ⊆ B2
r1(u0) and

Q ⊆ B2
r2(v0), where u0 ∈ R

p, v0 ∈ R
q . Then,

‖μ∗‖μ ≤ Lxx‖B‖μ,L2
p
r1

√
θ + Lxy‖C‖λ,L2

q
r2

√
θ + ‖∇xΦ(Bu0 + x̃0, Cv0 + ỹ0)‖μ,

‖λ∗‖λ ≤ Lyx‖B‖μ,L2
p
r1

√
θ + Lyy‖C‖λ,L2

q
r2

√
θ + ‖∇yΦ(Bu0 + x̃0, Cv0 + ỹ0)‖λ.

Proof Consider the function ψ(λ∗, μ). From Lemmas 4.1 and 4.2, we know that this
function is concave and smooth in μ with the gradient given by (47). Also, the func-
tion ψ(λ∗, μ) achieves its maximum at μ = μ∗. From the corresponding optimality
condition, we get 0 = ∇μψ(λ∗, μ∗) = x∗ − Bu∗ − x̃0. Hence, x∗ = Bu∗ + x̃0.
Similarly, we have y∗ = Cv∗ + ỹ0.

We can find also x∗, y∗ from the problem (39), which can be rewritten as

ψ2(λ
∗, μ∗) = min

x
{〈μ∗, x〉 + ψ̃2(x, λ

∗)}, ψ̃2(x, λ
∗) := max

y
{Φ(x, y) − 〈λ∗, y〉}.

Since Φ(x, y) is strongly convex in y, from the optimality condition for the first
problem, we obtain that μ∗ = −∇x ψ̃2(x∗, λ∗) = −∇xΦ(x∗, y∗).
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Let us introduce functions u0(t) ≡ u0, v0(t) ≡ v0 Finally, we have the following
sequence of inequalities

‖μ∗‖μ = ‖∇xΦ(x∗, y∗)‖μ

≤ ‖∇xΦ(Bu∗ − x̃0, Cv∗ + ỹ0) − ∇xΦ(Bu0(t) + x̃0, Cv0(t) + ỹ0)‖μ

+ ‖∇xΦ(Bu0(t) + x̃0, Cv0(t) + ỹ0)‖μ ≤
≤ Lxx‖Bu∗ − Bu0(t)‖μ,∗ + Lxy‖Cv∗ − Cv0(t)‖λ,∗

+ ‖∇xΦ(Bu0(t) + x̃0, Cv0(t) + ỹ0)‖μ

≤ Lxx‖B‖μ,L2
p
r1

√
θ + Lxy‖C‖λ,L2

q
r2

√
θ + ‖∇xΦ(Bu0(t) + x̃0, Cv0(t) + ỹ0)‖μ.

The proof of the second inequality in the statement of the lemma is similar. ��

4.2 Algorithm Description

In this section, we assume that the norms ‖ · ‖λ and ‖ · ‖μ are Euclidian. Let us
introduce the prox function dλ(λ) := σλ

2 ‖λ‖2λ. The function dλ(λ) is strongly convex
in this normwith the convexity parameter σλ. For the variableμ, we introduce the prox
function dμ(μ) := σμ

2 ‖μ‖2μ, which is strongly convex with the convexity parameter
σμ with respect to the norm ‖·‖μ. These prox functions are differentiable everywhere.

For any λ1, λ2 ∈ R
m we can define the Bregman distance:

ωλ(λ1, λ2) := dλ(λ2) − dλ(λ1) − 〈∇dλ(λ1), λ2 − λ1〉.

Using the explicit expression for dλ(λ), we get ωλ(λ1, λ2) = σλ

2 ‖λ1 − λ2‖2. Let us
choose λ̄ = 0 as the center of the space Rm . Then, we have ωλ(λ̄, λ) = dλ(λ). For μ,
we introduce the similar settings.

In the sameway as it was done in the Section 3.3,we conclude that finding the saddle
point (λ∗, μ∗) for the conjugate problem (37) is equivalent to solving the variational
inequality

〈g(λ, μ), (λ − λ∗, μ − μ∗)〉 ≥ 0, ∀λ,μ, (48)

where
g(λ, μ) := (∇λψ(λ, μ),−∇μψ(λ,μ)). (49)

Let us choose some κ ∈]0, 1[. Consider a space of z := (λ, μ) with the norm

‖z‖z :=
√

κσλ ‖λ‖2λ + (1 − κ)σμ ‖μ‖2μ,

an oracle g(z) := (∇λψ(λ, μ),−∇μψ(λ,μ)), a new prox function

d(z) := κdλ(λ) + (1 − κ)dμ(μ)
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which is strongly convex with constant σ0 = 1. We define W := R
m × R

n , the
Bregman distance

ω(z1, z2) := κωλ(λ1, λ2) + (1 − κ)ωλ(μ2, μ2)

which has an explicit form of ω(z1, z2) = d(z1 − z2), and center z̄ = (0, 0). Then,
we have ω(z̄, z) = d(z). Note that the norm in the dual space is defined as

‖g‖z,∗ :=
√

1

κσλ

‖gλ‖2λ,∗ + 1

(1 − κ)σμ

∥∥gμ

∥∥2
μ,∗.

Lemma 4.4 Let the Assumptions A3, A4 be true, and κ = σμ

σμ+σλ
. Then, the operator

g(z) defined in (49) is Lipschitz continuous:

‖g(z1) − g(z2)‖z,∗ ≤ L ‖z1 − z2‖z (50)

with

L = σλ + σμ

σμσλ

√√√√√2

⎛
⎝‖C‖2

λ,L2
q

σFv

+ 1

σΦy

+
‖B‖μ,L2

p
‖C‖λ,L2

q
Lvu

σFuσFv

+ Lyx

σΦxσΦy

⎞
⎠

√√√√√
⎛
⎝‖B‖μ,L2

p
‖C‖λ,L2

q
Luv

σFuσFv

+ Lxy

σΦxσΦy
+

‖B‖2
μ,L2

p

σFu
+ 1

σΦx

⎞
⎠. (51)

Proof Denote

c := ‖λ1 − λ2‖λ , d := ‖μ1 − μ2‖μ ,

α1 :=
‖C‖2

λ,L2
q

σFv

+ 1

σΦy

, α2 :=
‖B‖μ,L2

p
‖C‖λ,L2

q
Luv

σFuσFv

+ Lxy

σΦxσΦy

,

β1 :=
‖B‖μ,L2

p
‖C‖λ,L2

q
Lvu

σFuσFv

+ Lyx

σΦxσΦy

, β2 :=
‖B‖2

μ,L2
p

σFu
+ 1

σΦx

.

Then, from Eqs. (40), (41), (44), (45) we have:

‖∇λψ(λ1, μ1) − ∇λψ(λ2, μ2)‖2λ,∗ ≤ (α1c + β1d)2 ,∥∥∇μψ(λ1, μ1) − ∇μψ(λ2, μ2)
∥∥2

μ,∗ ≤ (α2c + β2d)2 .

Since κ = σμ

σμ+σλ
, we get

κσλ = (1 − κ)σμ = σμσλ

σμ + σλ

:= σ.
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Using the above expressions we obtain

‖g(z1) − g(z2)‖2z,∗ = 1

κσλ

‖∇λψ(λ1, μ1) − ∇λψ(λ2, μ2)‖2λ,∗

+ 1

(1 − κ)σμ

∥∥∇μψ(λ1, μ1) − ∇μψ(λ2, μ2)
∥∥2

μ,∗

≤ 1

σ
(α1c + β1d)2 + 1

σ
(α2c + β2d)2 ≤ 2

σ
(α1c + β1d)(α2c + β2d)

≤ 2

σ
(α1α2c

2 + β1β2d
2 + (α1β2 + α2β1)cd)

≤ 1

σ
((2α1α2 + α1β2 + α2β1)c

2 + (2β1β2 + α1β2 + α2β1)d
2)

≤ 2

σ
(
√

α1α2(α1 + β1)(α2 + β2)c
2 +√β1β2(α1 + β1)(α2 + β2)d

2)

≤ 2(α1 + β1)(α2 + β2)

σ 2 (κσλc
2 + (1 − κ)σμd

2)

= 2(α1 + β1)(α2 + β2)

σ 2
‖z1 − z2‖2z .

Thus, we get that g(z) is Lipschitz continuous with

L =
√
2(α1 + β1)(α2 + β2)

σ 2 ,

which is (51). ��
In accordance with [5] for solving (48), we can use the following method:

1. Initialization: Fix β = L . Set s−1 = 0.
2. Iteration (k ≥ 0):

Compute xk = Tβ(z̄, sk−1), (M2)

Compute zk = Tβ(xk,−g(xk)),

Set sk = sk−1 − g(zk).

Here

Tβ(z, s) := argmax
x∈W {〈s, x − z〉 − βω(z, x)}.

Similarly to [1], we can prove that the method (M2) generates a bounded sequence
{zi }i≥0. Hence, the sequences {λi }i≥0, {μi }i≥0 are also bounded. Also, since the
saddle point in the problem (4) exists, there exists a saddle point (λ∗, μ∗) for the
conjugate problem (37). These arguments allow us to choose Dλ, Dμ such that
dλ(λi ) ≤ Dλ, dμ(μi ) ≤ Dμ for all i ≥ 0, which also ensure that (λ∗, μ∗) is an
interior solution:

Bλ
r/

√
κσλ

(λ∗) ⊆ Wλ := {λ : dλ(λ) ≤ Dλ} ,

B
μ

r/
√

(1−κ)σμ
(μ∗) ⊆ Wμ := {μ : dμ(μ) ≤ Dμ

}
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for some r > 0. Then we have z∗ := (λ∗, μ∗) ∈ FD := {z ∈ W : d(z) ≤ D} with
D := κDλ + (1 − κ)Dμ and Bz

r (z
∗) ⊆ FD .

From the Theorem 1 in [5], using the relation σ0 = 1, similarly to the proof of the
Theorem 2 in [5], we get the following lemma.

Lemma 4.5 Assume that the operator g(z) is Lipschitz continuous on W with the
constant L. Let the sequence {zi }i≥0 be generated by the method (M2). Then, for any
k ≥ 0, we have

δk(D) ≤ LD, (52)

where δk(D) is defined in (20).

Theorem 4.1 Let the Assumptions A3 and A4 be true, κ = σμ

σμ+σλ
, and L be defined

in (51). Let the points zi = (λi , μi ), i ≥ 0 be generated by the method (M2). Let
the points in (22) be defined by points (ui , vi ), (xi , yi ) which are the saddle points at
the points (λi , μi ) in (38) and (39), respectively. Then, for functions ξ(u, x), η(v, y)
defined in (26) and (27), we have:

ξ(ûk+1, x̂k+1) − η(v̂k+1, ŷk+1) ≤ LD

k + 1
. (53)

Also the following is true:

∥∥Bûk+1 + x̃0 − x̂k+1
∥∥

μ,∗ ≤ LD
√

σμ

r(k + 1)
,
∥∥Cv̂k+1 + ỹ0 − ŷk+1

∥∥
λ,∗ ≤ LD

√
σλ

r(k + 1)
.

(54)

Proof Similarly to the proof of the Theorem 3.1, we conclude that

ξ(ûk+1, x̂k+1) − η(v̂k+1, ŷk+1) ≤ δk(D)

k + 1
,

∥∥Bûk+1 + x̃0 − x̂k+1
∥∥

μ,∗ ≤ δk(D)
√

σμ

r(k + 1)
,

∥∥Cv̂k+1 + ỹ0 − ŷk+1
∥∥

λ,∗ ≤ δk(D)
√

σλ

r(k + 1)
.

Lemma 4.5 and these inequalities prove the statement of the theorem. ��
Let usmake some notes on how to choose parameters D and r of themethod. Recall

the example introduced in the Sect. 3.1 with y0 = (2, 0)T . We see that the assumptions
A3 and A4 hold.

We choose Euclidian norms in the spaces Rn,Rm . As we already know from the
Sect. 3.3 ‖B‖2 = ‖C‖2 = 1.12. Also we know that Luv = Lvu = 0, Lxx = Lxy =
Lyx = Lyy = 1, σFu = σFv = σΦx = σΦy = 1. Hence, L = 6.5.

Next, we need to find Dλ, Dμ, and D. From the Lemma 4.3 since ‖B‖2 = ‖C‖2 =
1.12, P = Q = [−1, 1], we can take r1 = r2 = 1, u0 = 0, v0 = 0. Hence,
‖λ∗‖2 ≤ 8.4, ‖μ∗‖2 ≤ 4.5.
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Using the method above, we can find nearly feasible nearly optimal solution. We

choose prox functions dλ(λ) = ‖λ‖22
2 , dμ(μ) = ‖μ‖22

2 , κ = 1/2. Then, we have

d(z) = ‖λ‖22
4 + ‖μ‖22

4 , ‖z∗‖z ≤ 6.7
Making a similar argument as in the proof of the Theorem 2 in [1], we get that for

the sequence {zk} generated by the method (M2), it holds that

‖zk − z∗‖2z ≤ 2d(z∗) = ‖z∗‖z .

Then,

d(zk) = ‖zk‖2z
2

≤ 1

2
(‖z∗‖z + ‖z∗‖z)2 ≤ 90.

So ‖λk‖22/2 ≤ 180 andwe can take Dλ = 180. In the sameway, we get that Dμ = 180
and also that D = 180. Finally, we have that Bz

7.4(z
∗) ⊆ FD and r = 7.4.

5 Duality for Finite-dimensional Saddle-point Problems

In this section, our goal is to solve the following saddle-point problem:

min
x∈X

[
max
y∈Y {Φ(x, y) : Gy = g} : Hx = h

]

= max
y∈Y

[
min
x∈X {Φ(x, y) : Hx = h} : Gy = g

]
, (55)

where G ∈ R
k×m, g ∈ R

k, H ∈ R
l×n, h ∈ R

l , X ⊂ R
n,Y ⊂ R

m are closed, convex,
and bounded sets, and the function Φ(·, y) is convex for any fixed y, and the function
Φ(x, ·) is concave for any fixed x . In this problem, we can pass to a dual formulation
by introducing new variables as the Lagrange multipliers for the constraints.

Similarly to the proof of the Lemma 3.1, we get that the conjugate problem for (55)
is given by the following

Lemma 5.1 The problem (55) is equivalent to the following one:

min
λ

max
μ

{
min
x∈X max

y∈Y [Φ(x, y) − 〈μ, Hx〉 + 〈λ,Gy〉] + 〈μ, h〉 − 〈λ, g〉
}

, (56)

which is called the conjugate problem to the problem (55). Here λ ∈ R
k, μ ∈ R

l .

Note that the function in the inner problem in the relation (56)

ψ(λ,μ) := min
x∈X max

y∈Y [Φ(x, y) − 〈μ, Hx〉 + 〈λ,Gy〉] (57)

is well defined for every λ,μ since its objective function is convex–concave and the
sets X,Y are convex and compact.
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In the same way as it was done in the Sect. 3, we get the following

Lemma 5.2 Let (x∗, y∗) be a saddle point in the problem (57) for some fixed λ ∈ R
k

and μ ∈ R
l . Then, the function ψ(·, μ) is convex for any fixed μ ∈ R

l , and its
subgradient∇λψ(λ, μ) = Gy∗ is a bounded function of (λ, μ). Similarly, the function
ψ(λ, ·) is concave for any fixed λ ∈ R

k , and its supergradient ∇μψ(λ,μ) = −Hx∗
is a bounded function of (λ, μ).

Thus, we started from the saddle-point problem (55) and obtained the equivalent
problem (56), which also has a saddle-point structure, and its objective function is
also convex–concave. Moreover, we know for this function the partial sub- and super-
gradients. Hence, if we can solve the problem (57) efficiently (or in a closed form)
for every λ,μ, then we can apply a standard method (e.g., [1] as it was done above)
for solving the conjugate problem. If the method [1] is used, the primal approximate
solution can be reconstructed by averaging saddle points in the problem (57) obtained
on each iteration of the method. This approach can be efficient if the sets X and Y are
simple and the dimensions of linear constraints are smaller than the dimensions of x
and y.

6 Conclusions

In this paper, we have shown that infinite-dimensional differential games can be
transformed into finite-dimensional dual form, which is just a usual convex–concave
saddle-point problem. The latter problem can be solved by a standard finite-
dimensional scheme, which allows reconstruction of the infinite-dimensional primal
solution. This approach is feasible when the objective function is simple enough and
allows to compute its conjugate function in a closed form. Such situation is quite
common since in many applications the main source of complexity is the presence of
the linear constraints for the solutions of ordinary differentiable equation (ODE). In
this paper, we did not discuss the inaccuracy issues related to numerical errors in the
solutions of ODE and discretization of control. However, this can be easily done for
a particular ODE solver applying the standard analysis of the minimization schemes
with inexact gradient.

This paper continues the line of research, started in [2], which exploits a significant
asymmetry in the dimension of primal and dual variables. The authors are going to
study applicability of this technique to other infinite-dimensional problems. However,
the main challenge for the future research remains the presence of constraints on the
phase variables.
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